miércoles, 21 de marzo de 2012

POLINOMIOS Y SUS OPERACIONES


Un monomio es una expresión algebraica  con una sola indeterminada en el que las únicas operaciones que aparecen son el producto y la potencia de exponente natural.

Se llama polinomio a la expresión algebraica formada por la suma
 de varios monomios.

-Cada monomio recibe el nombre de término.
-El número que aparece multiplicando a la parte literal se denomina coeficiente.
- El Término que no tiene parte literal se denomina término independiente y el mayor grado de sus términos es el grado del polinomio.
- El término de mayor grado se denomina  término principal.

Los polinomios se suelen dar de forma ordenada y reducida; es decir,
 sumados los  monomios semejantes y ordenados según su grado


Operaciones con polinomios



Suma de polinomios




Para sumar dos polinomios se suman los coeficientes de los términos del mismo grado.

P(x) = 2x3 + 5x − 3         Q(x) = 4x − 3x2 + 2x3
1Ordenamos los polinomios, si no lo están.
 Q(x) = 2x3 − 3x2 + 4x
P(x) +  Q(x) = (2x3 + 5x − 3) + (2x3 − 3x2 + 4x)
2Agrupamos los monomios del mismo grado.
P(x) +  Q(x) = 2x3 + 2x3 − 3 x2 + 5x + 4x − 3
3Sumamos los monomios semejantes.
P(x) +  Q(x) = 4x3 − 3x2 + 9x − 3
También podemos sumar polinomios escribiendo uno debajo del otro,
 de forma que los monomios semejantes queden en columnas y
 se puedan sumar.
P(x) = 7x4 + 4x2 + 7x + 2        Q(x) = 6x3 + 8x +3
suma de polinomios
P(x) + Q(x) = 7x4 + 6x3 + 4x2 + 15x + 5

Resta de polinomios

La resta de polinomios consiste en sumar el opuesto del sustraendo.
P(x) − Q(x) = (2x3 + 5x − 3) − (2x3 − 3x2 + 4x)
P(x) −  Q(x) = 2x3 + 5x − 3 − 2x3 + 3x2 − 4x
P(x) −  Q(x) = 2x3 − 2x3 + 3x2 + 5x − 4x − 3
P(x) −  Q(x) = 3x2 + x − 
Multiplicación de polinomios
P(x) = 2x2 − 3    Q(x) = 2x3 − 3x2 + 4x
Se multiplica cada monomio del primer polinomio
 por todos los elementos segundo polinomio.
P(x) ·  Q(x) = (2x2 − 3) · (2x3 − 3x2 + 4x) =
= 4x5 − 6x4 + 8x3 − 6x3 + 9x2 − 12x =
Se suman los monomios del mismo grado.
= 4x5 − 6x4 + 2x3 + 9x2 − 12x
Se obtiene otro polinomio cuyo grado es la suma
 de los grados de los polinomios que se multiplican.



División de polinomios


P(x) = x5 + 2x3 − x − 8         Q(x) = x2 − 2x + 1
P(x) :  Q(x)
A la izquierda situamos el dividendo.
 Si el polinomio no es completo dejamos huecos en los lugares que correspondan.
DIVISIÓN
A la derecha situamos el divisor dentro de una caja.
Dividimos el primer monomio del dividendo entre el primer monomio del divisor.
x5 : x2 = x3
Multiplicamos cada término del polinomio divisor por el resultado anterior y
 lo restamos del polinomio dividendo:
DIVISIÓN
Volvemos a dividir el primer monomio del dividendo entre el primer monomio del divisor.
 Y el resultado lo multiplicamos por el divisor y lo restamos al dividendo.
2x4 : x2 = 2 x2
DIVISIÓN
Procedemos igual que antes.
5x3 : x2 = 5 x
DIVISIÓN
Volvemos a hacer las mismas operaciones.
8x2 : x2 = 8
DIVISIÓN
10x −16 es el resto, porque su grado es menor que el del divisor y
 por tanto no se puede continuar dividiendo.
x3 + 2x2 + 5x + 8 es el cociente.





No hay comentarios:

Publicar un comentario