Un monomio es una expresión algebraica con una sola indeterminada en el que las únicas operaciones que aparecen son el producto y la potencia de exponente natural.
Se llama polinomio a la expresión algebraica formada por la suma
de varios monomios.
-Cada monomio recibe el nombre de término.
-El número que aparece multiplicando a la parte literal se denomina coeficiente.
- El Término que no tiene parte literal se denomina término independiente y el mayor grado de sus términos es el grado del polinomio.
- El término de mayor grado se denomina término principal.
Los polinomios se suelen dar de forma ordenada y reducida; es decir,
sumados los monomios semejantes y ordenados según su grado
Operaciones con polinomios
Suma de polinomios
Para sumar dos polinomios se suman los coeficientes de los términos del mismo grado.
P(x) = 2x3 + 5x − 3 Q(x) = 4x − 3x2 + 2x3
1Ordenamos los polinomios, si no lo están.
Q(x) = 2x3 − 3x2 + 4x
P(x) + Q(x) = (2x3 + 5x − 3) + (2x3 − 3x2 + 4x)
2Agrupamos los monomios del mismo grado.
P(x) + Q(x) = 2x3 + 2x3 − 3 x2 + 5x + 4x − 3
3Sumamos los monomios semejantes.
P(x) + Q(x) = 4x3 − 3x2 + 9x − 3
También podemos sumar polinomios escribiendo uno debajo del otro,
de forma que los monomios semejantes queden en columnas y
se puedan sumar.
P(x) = 7x4 + 4x2 + 7x + 2 Q(x) = 6x3 + 8x +3

P(x) + Q(x) = 7x4 + 6x3 + 4x2 + 15x + 5
Resta de polinomios
La resta de polinomios consiste en sumar el opuesto del sustraendo.
P(x) − Q(x) = (2x3 + 5x − 3) − (2x3 − 3x2 + 4x)
P(x) − Q(x) = 2x3 + 5x − 3 − 2x3 + 3x2 − 4x
P(x) − Q(x) = 2x3 − 2x3 + 3x2 + 5x − 4x − 3
P(x) − Q(x) = 3x2 + x −
Multiplicación de polinomios
P(x) = 2x2 − 3 Q(x) = 2x3 − 3x2 + 4x
Se multiplica cada monomio del primer polinomio
por todos los elementos segundo polinomio.
P(x) · Q(x) = (2x2 − 3) · (2x3 − 3x2 + 4x) =
= 4x5 − 6x4 + 8x3 − 6x3 + 9x2 − 12x =
Se suman los monomios del mismo grado.
= 4x5 − 6x4 + 2x3 + 9x2 − 12x
Se obtiene otro polinomio cuyo grado es la suma
de los grados de los polinomios que se multiplican.
División de polinomios
P(x) = x5 + 2x3 − x − 8 Q(x) = x2 − 2x + 1
P(x) : Q(x)
A la izquierda situamos el dividendo.
Si el polinomio no es completo dejamos huecos en los lugares que correspondan.

A la derecha situamos el divisor dentro de una caja.
Dividimos el primer monomio del dividendo entre el primer monomio del divisor.
x5 : x2 = x3
Multiplicamos cada término del polinomio divisor por el resultado anterior y
lo restamos del polinomio dividendo:

Volvemos a dividir el primer monomio del dividendo entre el primer monomio del divisor.
Y el resultado lo multiplicamos por el divisor y lo restamos al dividendo.
2x4 : x2 = 2 x2

Procedemos igual que antes.
5x3 : x2 = 5 x

Volvemos a hacer las mismas operaciones.
8x2 : x2 = 8

10x −16 es el resto, porque su grado es menor que el del divisor y
por tanto no se puede continuar dividiendo.
x3 + 2x2 + 5x + 8 es el cociente.
No hay comentarios:
Publicar un comentario